Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

Study on iron-based matrix formula for hot pressed diamond bit using uniform design method


Post Date: 05 Nov 2008    Viewed: 912
Yang Yang, Pan Bingsuo, Yang Kaihua
(Faculty of Engineering, China University of Geosciences, 430074)
Abstract A new type of iron-based matrix formula as a potential substitute for traditional WC-based matrix formula for hot pressed diamond bit was investigated. Iron, phosphor-iron, 663-Cu, nickel, cobalt and certain additives were selected as the studied formula constituents. Among matrix performances, matrix hardness and wear resistance were chosen as experimental indexes in this paper. Constrained uniform design method was used for the formula design of iron-based matrix. Two forms of regression models of matrix hardness and wear resistance were obtained by regression analysis using MATLAB. Moreover, the optimization of matrix formulae and matrix performances were also achieved through constrained nonlinear programming. It was found that matrix hardness, significantly affected by the factor of Ni-Co-additives and Fe, increased with the increment of Ni-Co-additives, Fe and P-Fe, but reduced with the increase of 663-Cu. Matrix wear resistance was mainly affected by Fe; meantime, the interactions between Fe and P-Fe, Fe and Ni-Co-additives were also relatively obvious. The increment of 663-Cu powder may result in a slight improvement in matrix wear resistance. In addition, the results of nonlinear programming revealed that the predictive optimum value of hardness was 139.5 HRB and the optimum wear resistance was 0.056 g, whereas they could not reach the optimum value at the same time.
Keywords formula optimization; stepwise regression; P-Fe alloy; matrix performance

Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0206 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2