Graphene Reinforced Alumina Tougher and More Conductive Than Plain Alumina
Post Date: 10 Sep 2013 Viewed: 344
he team of researchers found that when a bit of graphene is added to the ceramic alumina, the material becomes up to 50% less likely to break under strain, a feature highly desired for many end uses of ceramics. Furthermore, the method is simple, fast, and upscalable, making it virtually ready for industrial application. The team believes that the same method could be used for reinforcing other ceramic materials, such as silicon carbide, silicon nitride, titania, and zirconia. What's more, the addition of graphene makes alumina a hundred million times more conductive to electricity.
Graphene, a single layer of carbon atoms connected in a two-dimensional “carpet”, was first made in a lab in Manchester in 2004. Six years later, its discoverers received the Nobel prize in physics for finding the material and demonstrating many of its unique properties. For example, graphene is one of the most electrically conductive materials known to mankind. It is also, given its thickness, stronger than steel, yet flexible. Graphene is transparent, making it ideally suited as a transparent conducting layer for the next generation of flexible touchpanels. Graphene is also a good conductor of heat, having been shown to guide heat away from electronic circuits.
After an initial explosion of scientific interest in graphene, time has come to explore technological and industrial applications. To this end, the European Union has selected graphene as one of its two flagship research directions, meaning that graphene research will receive a billion euros worth of funding in the next ten years. The funding rules insist on the inclusion of businesses as well as academic institutions. Graphenea is the biggest supplier of graphene on board of the flagship.