Peak Performance for High-Volume Vertical Turning
Post Date: 20 Jun 2014 Viewed: 887
The machine is loaded and unloaded simultaneously with grippers located in the two turrets. The workpieces are transported on conveyor belts located on the left and right of the machine.
According to a recent study by Roland-Berger, demand for automotive parts will expand at a rate of approximately 6% over the next two years, with competition intensifying. To gain an advantage, automotive parts suppliers must reemphasize profitability in the operations. Component production must become faster, with higher reliability for precision, to demonstrate economic viability.
That is the set-up presented by EMAG Maschinenfabrik GmbH in its presentation of a new vertical lathe, the VT 4-4, which it reported delivers at the highest level for efficiency in high-volume turning of driveline parts.
For several reasons, the production of drive and gear shafts represents a very specific task in the automotive supply chain. First, many of these parts are highly detailed and involve complex geometries that are critical to performance. For instance, high-precision gearing ensures a highly effective torque transmission within the gearbox.
Having high-precision shoulders and grooves allows for safe connectivity of components. The efficiency of a powertrain as a whole depends largely on the functionality of its shaft. These complex components are produced in batches of millions — and once the primary turning work is done the shaft should, ideally, display a geometry that is as close to final contour as possible. “Tolerance production planners look for the micrometer range of the shaft,” according to EMAG.
The machine builder developed a four-axis vertical shaft turning machine to reconcile these high-performance requirements. It now reports the VT 4-4 opens up new potential for machining components with a maximum length of 41 inches and a maximum diameter of 8 inches, with two specific advantages:
• Simultaneous machining: Machining is carried out in four axes at a maximum speed of 4,500 rpm. The process employs two turrets, each one with 12 tool stations, equipped with turning tools or driven tools, with one station reserved for the gripper.
• Automated machining: Workpiece grippers move the raw-parts to the machining area and remove the finished components — meaning that one gripper inserts a new workpiece into the machine as the other gripper removes the finished component from the working envelope.