Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

Polymer-based graphene substitute is easy to mass-produce


Post Date: 05 Jul 2014    Viewed: 294

For all the attention graphene gets thanks to its impressive list of properties, how many of us have actually encountered it in anything other than its raw graphite form? Show of hands. No-one? That's because it is still difficult to mass-produce without introducing defects. Now a team at the Korea Institute of Science and Technology (KIST) has developed a graphene substitute from plastic that offers the benefits of graphene for use in solar cells and semiconductor chips, but is easy to mass-produce.

The technique that currently shows the greatest potential for producing high quality graphene at large scales is chemical vapor deposition (CVD). This is a complicated eight-step process whereby gaseous reactants are deposited onto a metal film substrate that acts as a catalyst. Once the graphene is formed, it needs to be removed from the metal substrate and transferred to another board, such as a solar cell substrate, which runs the risk of wrinkling or cracking the graphene.

The KIST team claims the process used to produce its new synthesized carbon nanosheets is much simpler, involving a two-steps that are catalyst- and transfer-free. Based on the same continuous process used to mass-produce carbon fiber, the researchers say it also faces a much easier transition to full-scale commercialization. Furthermore, the team was able to show that the nanosheets can be used directly as transparent electrodes for organic solar cells without requiring any additional processing.

Put (very) simply, to produce carbon nanosheets with properties similar to graphene, the researchers spin-coated a polymer solution onto a quartz substrate and heat-treated it at 1,200° C (2,192° F). They claim that by eliminating the need for a metal substrate or for transferring the nanosheets to another board, they bypass the steps that are likely to lead to defects in the material.

"[The process] is expected to be applied for commercialization of transparent and conductive 2D carbon materials without difficulty since this process is based on the continuous and mass-produced process of carbon fiber," said Dr. Han Ik Joh who led the research team.

The team's work is detailed in a paper published in the journal Nanoscale. 


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0380 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2