Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

A nanosensor to identify vapors based on a graphene-silicon heterojunction Schottky diode


Post Date: 26 Jul 2014    Viewed: 305

Among other carbon-based nanomaterials, graphene represents a great promise for gas sensing applications. In 2009 the detection of individual gas molecules of NO[sub]2[/sub] adsorbed onto graphene surface was reported for the first time. This initial observation has been successfully explored during the recent years. The Nanobioelectronics & Biosensors Group at Institut Català de Nanociència i Nanotecnologia (ICN2), led by ICREA Research Professor Arben Merkoçi, published in Small a work showing how to use a Graphene/Silicon Heterojunction Schottky Diode as a sensitive, selective and simple tool for vapors sensing. The work was developed in collaboration with researchers from the Amirkabir University of Technology (Tehran, Iran).

The Graphene/Silicon heterojunction Schottky diode is fabricated using a silicon wafer onto which Cr and Au were deposited to form the junction between graphene and silicon (see the attached figure). The adsorbed vapor molecules change the local carrier concentration in graphene, which yields to the changes in impedance response. The vapors of the various chemical compounds studied change the impedance response of Graphene/Silicon heterojunction Schottky diode. The relative impedance change versus frequency dependence shows a selective response in gas sensing which makes this characteristic frequency a distinctive parameter of a given vapor.

The device is well reproducible for different concentrations of phenol vapor using three different devices. This graphene based device and the developed detection methodology could be extended to several other gases and applications with interest for environmental monitoring as well as other industries. 


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0236 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2