Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

GraphExeter defies the Achilles heel of 'wonder material' graphene


Post Date: 09 Jan 2015    Viewed: 324

 A resilience to extreme conditions by the most transparent, lightweight and flexible material for conducting electricity could help revolutionise the electronic industry, according to a new study.

Researchers from the University of Exeter have discovered that GraphExeter - a material adapted from the 'wonder material' graphene - can withstand prolonged exposure to both high temperature and humidity.

The research showed that the material could withstand relative humidy of up to 100 per cent at room temperature for 25 days, as well as temperatures of up to 150C - or as high as 620C in vacuum.

The previously unknown durability to extreme conditions position GraphExeter as a viable and attractive replacement to indium tin oxide (ITO), the main conductive material currently used in electronics, such as 'smart' mirrors or windows, or even solar panels. The research also suggests that GraphExeter could extend the lifetime of displays such as TV screens located in highly humid environments, including kitchens.

These research findings are published in the respected scientific journal, Scientific Reports, on Thursday, 8 January 2015.

Lead researcher, University of Exeter engineer Dr Monica Craciun said: "This is an exciting development in our journey to help GraphExeter revolutionise the electronics industry.

"By demonstrating its stability to being exposed to both high temperatures and humidity, we have shown that it is a practical and realistic alternative to ITO. This is particularly exciting for the solar panel industry, where the ability to withstand all weathers is crucial."

Dr Saverio Russo, also from the University of Exeter, added: "The superior stability of GraphExeter as compared to graphene was unexpected since the molecules used to make GraphExeter (that is FeCl3) simply melt in air at room temperature.

"Having a metallic conductor stable at temperatures above 600C, that is also optically transparent and flexible, can truly enable novel technologies for space applications and harsh environments such as nuclear power centrals."

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for flexible electronics. This has been a challenge because of its sheet resistance, which limits its conductivity.

In 2012 the teams of Dr Craciun and Profesor Russo, from the University of Exeter's Centre for Graphene Science, discovered that sandwiched molecules of ferric chloride between two graphene layers make a whole new system that is the best known transparent material able to conduct electricity. The same team have now discovered that GraphExeter is also more stable than many transparent conductors commonly used by, for example, the display industry.


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0205 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2