Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

New graphene-based biosensor a triple threat


Post Date: 16 Jan 2015    Viewed: 329

Biosensors—electronic devices that can detect the presence of proteins and other biological molecules—have a wide variety of applications, from medical diagnostics and food safety, to security and law enforcement. But current biosensors need to be custom-built to detect a specific target.

A team of Penn engineers, led byErtugrul Cubukcu, an assistant professor in the School of Engineering and Applied Science, has devised a new kind of graphene-based biosensor that works in three ways at once. Because proteins trigger three different types of signals, the sensor can triangulate this information to produce more sensitive and accurate results.

Not only does this technique provide better data on the quantity of a given protein in a sample, the technique could eventually be used to make a single biosensor that could detect and differentiate a wide range of proteins.

“In a typical single mode biosensor, you have two proteins that interact strongly. You attach protein A to your sensor and, when protein B binds to it, the sensor transduces that binding into some sort of electrical signal,” Cubukcu says. “But it’s kind of a dumb sensor in that it can only tell you if that kind of binding has occurred.

“But let’s say you have proteins A, B, C, and D, all with different physical properties, like charge and mass,” he continues. “If you had a sensor that was sensitive to several of those properties, you could tell the difference between those binding events without starting with corresponding proteins for all of them.”

The more sensing modes operating at once, the better a sensor is at distinguishing between similar proteins. Proteins A and B might have the same mass but different charges, while proteins B and C have the same charges but different optical properties.

The team’s sensors consist of a base of silicon nitride, coated with a layer of graphene, a single-atom-thick lattice of carbon atoms. Being carbon-based means that graphene is an attractive bonding surface for proteins, which means that the device doesn’t need to be “functionalized” with proteins that are apt to interact with the ones the sensor aims to detect.

Graphene’s extreme thinness and unique electrical properties also allow for the mechanical, electrical, and optical modes to operate simultaneously without interfering with one another.

In the sensor’s mechanical mode, the vibrations in the graphene are used to infer the binding proteins’ mass. Their binding also changes the graphene’s conductivity and refractive index, which are used in the electrical and optical modes.

In their study, the researchers tested their sensor with known samples of proteins in order to demonstrate that all three modes can work simultaneously. Further work from the group will investigate the feasibility of using this multimodal sensor to identify proteins from unknown samples. 


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0212 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2