Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

6 Things You Might Not Know about Making Metal Parts through Additive Manufacturing


Post Date: 01 Apr 2015    Viewed: 379

Let go of the notion of simply “printing” a part. That is, let go of the notion that you can just press a button and the part will be created—additive manufacturing is not like that. Instead, AM is a process with important process considerations all its own. Particularly where metal parts are concerned, these considerations need to be understood in order to realize the benefits that AM can deliver.

I recently spoke about this with AM researchers at Penn State University’s CIMP-3D facility. Find a detailed article at the link below. Here are important points worth knowing if you are considering AM for metal part production:

1. New design tools might be needed. Metal parts being made today were designed for casting, forging and/or machining. Additive manufacturing opens the way to complex, mathematically streamlined component forms that a CAD designer’s typical tools would not be able to create. Software for topology optimization becomes important.

2. There is still plenty of scrap. Support structures are part of the engineering of an additive build. These structures (see photo) consume not only a share of material, but also perhaps a large share of the cycle time for the part.

3. Orientation has an impact. Do you build a given part so that it lies on its side? Sticks up vertically? Leans at a 45-degree angle? This decision—how to orient the part for its AM build—has a significant effect on part accuracy, cycle time and where the support structure is needed.

4. Residual stress is the hidden challenge. Internal forces can deform an additive part as layers are added and the part cools. Sometimes, trial-and-error is needed to find the process for a given part that will overcome this effect.

5. Material changes with use. Some particles melt before others. As a result, powder left over from a build has slightly different particle distribution from the powder that began it, and thus different properties. AM powder changes over time to a much greater extent than other manufacturing material stock.

6. Your new lightweight metal might be titanium. Titanium alloys are well-understood in additive manufacturing and therefore easy to apply. This tends to make titanium the AM metal of choice. Indeed, because of its high strength-to-weight ratio, a part redesigned for weight savings through AM might be lighter in titanium than it was when it had been a thick, solid part in aluminum that was designed for a more conventional process. 


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0308 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2