Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

Researchers Devise A Simple Method For Recycling Rare Earth Magnets


Post Date: 23 Jun 2015    Viewed: 407

You’ve probably heard a bit about rare Earth elements. They have got unpronounceable names likeytterbium and praseodymium, and they’re found in nearly ever piece of tech you own. Despite their value, we’re do a piss poor job recycling them. But chemists are now hoping to change that.

Clockwise from top center: Rare Earth metals praseodymium, cerium, lanthanum, neodymium, samarium, and gadolinium.

As we continue to mine our ever-dwindling supply of rare Earths, researchers at the University of Pennsylvania are trying to figure out how we can reduce our dependency on environmentally destructive extraction processes. And they seem to be making progress. A new study published in the journalAngewandte Chemie, International Edition describes a process that could enable us to efficiently recycle neodymium and dysprosium, two elements that comprise the magnets found in everything from electric motors and generators to headphones and hard drives.

Mining and refining rare Earths is dirty business. To accumulate an appreciable amount of these elements — so named for their low concentrations in the Earth’s crust — we have to dissolve large chunks of natural minerals, a process that involves an elixir of nasty industrial acids and other solvents. In doing so, we also extract radioactive elements such as thorium and end up generating tremendous amounts of toxic waste. It’s not hard to see why we’d like a better way of recovering these metals, but so far, our record isn’t impressive.

The chemists’ new method is a step in the right direction. Neodymium and dysprosium are often mixed together to create magnets with excellent magnetic and thermal properties. But because different ratios of the two elements are needed for different applications, it would be great if we could tease them apart again after use. Starting with a powdered mixture, the researchers showed that the two metals can be separated almost instantaneously using a specialised ligand that binds neodymium. Once separated, weak acids can strip the ligand away, allowing both metals to be recycled.

“If you have the right ligand, you can do this separation in five minutes, whereas the liquid-liquid extraction method [used in mining] takes weeks,” lead study author Eric Schelter said in a statement. “A potential magnet recycler probably doesn’t have the capital to invest in an entire liquid-liquid separations plant, so having a chemical technology that can instantaneously separate these elements enables smaller scale recyclers to get value out of their materials.”

The researchers hope that their new method can be modified for other applications, such as extracting rare Earths from compact fluorescent bulbs. Let’s keep our fingers crossed for more progress on this front, because a worldwide rare Earth metal shortage isn’t going to be pretty.


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0337 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2