Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

Scientists get first close-ups of finger-like growths that trigger battery fires


Post Date: 27 Oct 2017    Viewed: 943

Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have captured the first atomic-level images of finger-like growths called dendrites that can pierce the barrier between battery compartments and trigger short circuits or fires. Dendrites and the problems they cause have been a stumbling block on the road to developing new types of batteries that store more energy so electric cars, cell phones, laptops and other devices can go longer between charges.

This is the first study to examine the inner lives of batteries with cryo-electron microscopy, or cryo-EM, a technique whose ability to image delicate, flash-frozen proteins and other "biological machines" in atomic detail was honored with the 2017 Nobel Prize in chemistry.

The new images reveal that each lithium metal dendrite is a long, beautifully formed six-sided crystal - not the irregular, pitted shape depicted in previous electron microscope shots. The ability to see this level of detail for the first time with cryo-EM will give scientists a powerful tool for understanding how batteries and their components work at the most fundamental level and for investigating why high-energy batteries used in laptops, cell phones, airplanes and electric cars sometimes fail, the researchers said. They reported their findings in Science today.

"This is super exciting and opens up amazing opportunities," said Yi Cui, a professor at SLAC and Stanford and investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) whose group did the research.

"With cryo-EM, you can look at a material that's fragile and chemically unstable and you can preserve its pristine state - what it looks like in a real battery - and look at it under high resolution," he said. "This includes all kinds of battery materials. The lithium metal we studied here is just one example, but it's an exciting and very challenging one." 


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0204 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2