Diamond mirrors for high-power continuous-wave lasers
Post Date: 19 May 2022 Viewed: 1516
Just about every car, train and plane that’s been built since 1970 has been manufactured using high-power lasers that shoot a continuous beam of light. These lasers are strong enough to cut steel, precise enough to perform surgery, and powerful enough to carry messages into deep space. They are so powerful, in fact, that it’s difficult to engineer resilient and long-lasting components that can control the powerful beams the lasers emit.
Today, most mirrors used to direct the beam in high-power continuous wave (CW) lasers are made by layering thin coatings of materials with different optical properties. But if there is even one, tiny defect in any of the layers, the powerful laser beam will burn through, causing the whole device to fail.
If you could make a mirror out of a single material, it would significantly reduce the likelihood of defects and increase the lifespan of the laser. But what material would be strong enough?
Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have built a mirror out of one of the strongest materials on the planet: diamond. By etching nanostructures onto the surface of a thin sheet of diamond, the research team built a highly reflective mirror that withstood, without damage, experiments with a 10-kilowatt Navy laser.
"Our one-material mirror approach eliminates the thermal stress issues that are detrimental to conventional mirrors, formed by multi-material stacks, when they are irradiated with large optical powers,” said Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author of the paper. “This approach has potential to improve or create new applications of high-power lasers.”
The research is published in Nature Communications.
Loncar’s Laboratory for Nanoscale Optics originally developed the technique to etch nanoscale structures into diamonds for applications in quantum optics and communications.
“We thought, why not use what we developed for quantum applications and use it for something more classical,” said Haig Atikian, a former graduate student and postdoctoral fellow at SEAS and first author of the paper.
Using this technique, which uses an ion beam to etch the diamond, the researchers sculpted an array of golf-tee shaped columns on the surface on a 3-milimeter by 3-milimeter diamond sheet. The shape of the golf tees, wide on top and skinny on the bottom, makes the surface of the diamond 98.9% reflective.
SEM image of the diamond mirror. (Credit: Loncar Lab/Harvard SEAS)
Zoomed SEM image of the mirror (Credit: Loncar Lab/Harvard SEAS)
To test the mirror with a high-power laser, the team turned to collaborators at the Pennsylvania State University Applied Research Laboratory, a Department of Defense designated U.S. Navy University Affiliated Research Center.