Sign in | Join us  
      
 Popular Searches:diamond,cbn,tuck point blade,cup wheel,saw blade, brown fused alumina
Home -- Information


  Featured Companies
 • Yantai Cct Metal…
 • Dymend Tools Co.,…
 • Henan Boreas New…
 • Yancheng Xiehe Machinery…
 • EKF Industrial Supplies…
 • Ruishi New Material…
 • MORESUPERHARD
 • Henan Banner New…
 • Zhengzhou best synthetic…
 • Zhengzhou Haixu…

 Print  Add to Favorite
Custom your font size:     

Thermal and chemical properties


Post Date: 13 Aug 2010    Viewed: 760

Abstract

The crystallization behaviour of a glass in the SiO2–CaO–F system was analyzed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Three crystalline phases were detected according to ICDD patterns. The first phase formed at 583°C was identified as CaF2. The morphology was spherulitic with a diameter of approximately 100 nm. The second phase was formed at 664°C. It was identified as calcium fluoride silicate Ca2SiO2F2 (ICDD 35-0002). SEM investigation showed that the crystals were spherulitic with a diameter smaller than 100 nm. The crystals were precipitated in the volume of the glass and homogeneously distributed. As a third phase, cristobalite crystallized at 895°C. The simultaneous release of calcium and fluorine ions from the vitreous glass in lactate buffer solution at pH 4.0, simulating an acidic oral environment, was investigated using X-ray photoelectron spectroscopy (XPS). The release of calcium and fluorine ions is of special interest for dental applications. The atomic ratios of the components Si, Ca and F at the glass surface after different leaching periods were determined. In order to investigate the leaching process, concentration profiles were measured using ion beam sputtering with Ar+-ions. The dependence of the atomic ratios of Si, Ca and F on the sputter time was determined in order to measure the depth of the leaching layers. Most probably, the release of calcium and fluoride was controlled by a surface layer rich in calcium and flourine ions which dissolved with increasing leaching time. After 2 min leaching, a fluoride- rich surface layer measuring approximately 10 nm was detected. The atomic ratios of Si, Ca and F were different from the bulk composition ratios in a surface reaction layer of 800 nm thickness. After 30 min leaching time, a calcium- and fluoride-rich surface layer approximately 50 nm thick was formed. The bulk composition was reached at a depth of approximately 500 nm. The main component in the surface layer, after 12 days leaching in acidic environment, was silicon.

Keywords: calcium fluoride silicate, calcium release, crystallization, dental application


Superhard Material of China

Superhard Material of China

Abrasives and Grinding Products of China

Abrasives and Grinding Products of China

Coated Abrasives of China

Coated Abrasives of China

Chia International Abrasives & Grinding Exposition

China International Abrasives & Grinding Exposition

Home | About Us | Members | Contact | Advertising Quotation
Supported by Yuanfa Information Technology co.,Ltd
Copyright ©Abrasivesunion 2006. All rights reserved
Page rendered in 0.0205 seconds
增值电信业务经营许可证:豫B2-20202116  ICP备案:豫B2-20100036-2